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Effect of Reflection on Gyrotron Operation

Edith Borie

Abstract—The effect of wave reflection on the single-mode operation of a
gyrotron is investigated with the help of Rieke diagrams. For this purpose,
a set of self-consistent equations describing the beam–field interaction is
solved, taking into account the effect of the electron beam and the reflection
coefficient on the frequency and RF field profile.

Index Terms—Gyrotron, reflection.

I. INTRODUCTION

The subject of the influence of reflections on gyrotron operation has
been studied both theoretically [1]–[5] and experimentally [6], [7], [8],
[9]. If the thickness of the output window has been matched to the op-
erating wavelength, a nonzero reflection of parasitic modes can influ-
ence the operation of a gyrotron. This has been observed, for example,
in [10]. In long pulse operation, the frequency varies with time. This
has an effect on the efficiency and also influences the reflection coeffi-
cient. In this paper, we consider some effects of window reflection on
single-mode operation of a gyrotron. For this purpose, a set of self-con-
sistent equations describing the beam–field interaction is solved, taking
into account the effect of the electron beam and the reflection coeffi-
cient on the frequency and RF field profile.

The amplitude of the reflection coefficient due to a ceramic window
is easily computed [11]. The phase is affected by long-line effects [1],
[6] and is generally very poorly known since it is difficult to measure.
Even when long-line effects are relatively unimportant, as is the case
when a built-in quasi-optical convertor is used, the phase of the reflec-
tion coefficient may be important. The influence of the phase of the
reflection coefficient on the calculated output power and RF field pro-
file is considered in this paper.

In many of the more recent theoretical papers, the time evolution of
the amplitude was studied, but the longitudinal structure of the RF field
profile was fixed. However, this is not always a good approximation,
even for a matched load. This note reports on results calculated for the
case that the longitudinal structure is not fixed.

After reviewing the basic equations, we present numerical results
corresponding to experiments performed at the Forschungszentrum
Karlsruhe (FZK), Eggenstein-Leopoldshafen, Germany, on frequency
step tuning of a gyrotron designed to operate at 140 GHz in the
TE22; 6 mode [7], [8], [9].

II. BASIC EQUATIONS

The equations describing gyrotron operation at arbitrary harmonics
have been well known for a long time [13]–[15]. A derivation for the
conventions used here is given, for example, in [16]–[18]. Define

~u = 
~v=c (1)
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and

P = iu?e
�i(�+� ) = u?0 ~P (2)

where� is the slowly varying part of the gyrophase. The equation of
motion for the electrons in the field of aTEmp mode can be reduced to

uz � constant (3)
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Here,f̂(z) is the normalized field profile,
0 is the nonrelativistic cy-
clotron frequency, and the detuning parameter� is defined (withs = 1
for the first harmonic) as

� = 1�
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Also,
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is related to the similar quantity used by Russian researchers [25], [26]
by

FG =
s�2?
2

s�2

Fmp (7)

and

CmpGmp =�
Jm�s(kmpRe)

Jm(xmp) �(x2mp�m2)
: (8)

The output power in theTEmp mode is given by the Poynting vector.
One can show that [16]
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evaluated at the resonator output. Also note that
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In a self-consistent formulation, the field profile satisfies
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Here,
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where Ib is the beam current,Z0 = �0=�0, and kmp(z) =
xmp=R(z). If these equations are rewritten in terms of the indepen-
dent variable~z = !z=vz0, they become essentially independent of
the mode.

0018–9480/01$10.00 © 2001 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 7, JULY 2001 1343

TABLE I
BEAM PARAMETERS CALCULATED WITH BFCRAY

TABLE II
FREQUENCY ASFUNCTION OF MAGNETIC FIELD AND BEAM RADIUS FOR

COROTATINGTE AND TE MODES

The reflection coefficient is given by

R =
df̂mp=dz + ikz f̂mp

df̂mp=dz � ikz f̂mp

(11)

wherekz = !2=c2 � k2mp. Since the load is not always ideally
matched, the applicable boundary condition at the cavity output isR =

R1 for a givenR1. As mentioned in the introduction, the phase ofR1

is difficult to determine, even when the amplitude is known. A diagram
giving the real and imaginary parts ofR along contours of constant fre-
quency and/or output power is known as a Rieke diagram [12].

III. N UMERICAL RESULTS

Input to any code dealing with the beam–field interaction in a gy-
rotron cavity requires a knowledge of the beam properties (total current,
beam energy, velocity ratio) and the magnetic field in the resonator.
Table I shows beam properties calculated with the BFCRAY computer
code [22] for typical values of the experimental parameters.

Frequency pulling can have an effect on the reflection coefficient,
especially if the load is not well matched. Table II shows approxi-
mate values of the frequency calculated self-consistently (assuming
jRj = 0) for the corotatingTE25; 6 andTE22; 7 modes as a function
of the applied magnetic field for three-beam radii, assuming a current
of 46.6 A and beam energy of 78.9 keV. For theTE25; 6 mode, the av-
erage value ofh�i was 1.11, and for theTE22; 7 mode it was increased
to 1.37. The beam coupling factor for theTE25; 6 mode was nearly con-
stant, and, as expected, the frequency pulling does not depend much on
the beam radius, in contrast to the case of theTE22; 7 mode.

In single-mode approximation, theTE25; 6 andTE22; 7 modes can
both oscillate at the given beam parameters. In fact, both rotation di-
rections are possible in the case of theTE22; 7 mode. The stability of
an oscillating mode against perturbation by a parasitic mode was in-
vestigated using the cold-cavity fixed-field approximation for the field
profiles [19], [20]. For a beam radius of 8.1 mm, theTE22; 7� mode
was unstable against competition by both theTE22; 7+ andTE25; 6�
moded, for magnetic fields between 6.03–6.09 T. At a beam radius of
7.9 mm or less, it was stable. However, either of the other modes could
oscillate if it started first. (These calculations were performed assuming
no reflections.)

TABLE III
EFFECT OFPHASE OFREFLECTION COEFFICIENT ONGYROTRON OUTPUT,

WITH POWER REFLECTION OF 1.5%, BEAM ENERGY 78.9 keV,
I = 46:6 A, B = 6:03 T, BEAM RADIUS 7.9 mm,AND TWO VALUES OF

AVERAGE VELOCITY RATIO. RESULTS FOR THECASE OF A MATCHED

LOAD ARE ALSO GIVEN

In the power balance equation for two interacting modes, the quality
factor plays an important role [23]. We now demonstrate for the modes
of interest that the quality factor depends sensitively on the (unknown)
phase of the reflection coefficient and, hence, that mode competition
will also be influenced.

Table III shows the frequency, quality factor, and output power cal-
culated self-consistently for theTE22; 7�; TE22; 7+; andTE25; 6�
modes. The beam energy was 78.9 keV, current was 46.6 A, magnetic
field was 6.03 T, and beam radius was 7.9 mm. Average values of
h�i � 1:11 and1:36 were considered. The amplitude ofjRj was fixed
to correspond to power reflection of 1.5%, and the phase was varied.
For comparison, results calculated for a matched load (jRj = 0) are
also given. It is obvious that the frequency shift, output power, and
quality factor of a single mode depends sensitively on the phase of the
reflection coefficient. For some values, the quality factor of one of the
three competing modes is so much enhanced with respect to the other
that it might be favored. However, the stability of a working mode does
not seem to be determined only by the quality factor [21], [23].

Fig. 1 shows RF-field profiles for theTE22; 7+mode with� = 1:11
and all other parameters, as in the table. The three curves show the
(unnormalized) field profilesVmax � f̂ for the following three cases:

1) matched load;
2) 1.5% power reflection and� = 90

�;
3) 1.5% power reflection and� = 270

�.
It is obvious that the RF field profile depends sensitively on the phase
of the reflection coefficient, even when this has a rather small absolute
value (here,jRj = 0:1225).

The results of calculations are qualitatively similar whenjRj is dou-
bled (6% power reflection) and are summarized in Table IV and Fig. 2
for the case of theTE25; 6� mode, with a beam radius of 8.1 mm,
B = 6:03 T, and velocity ratio of 1.11. The quality factor varies by a
factor more than two, depending on the phase of the reflection coeffi-
cient.
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Fig. 1. RF field profilesV � f̂ for theTE + mode for: matched load
(solid curve), 1.5% power reflection and� = 90 (long dashes), and 1.5%
power reflection and� = 270 (short dashes).

TABLE IV
EFFECT OFPHASE OFREFLECTION COEFFICIENT ONGYROTRONOUTPUT FOR

THE COROTATINGTE MODE, WITH POWER REFLECTION OF6%, BEAM

ENERGY OF78.9 keV,I = 46:6 A, B = 6:03 T, BEAM RADIUS OF 8.1 mm
AND AVERAGE VELOCITY RATIO OF � = 1:11. RESULTS FOR THECASE

OF A MATCHED LOAD ARE ALSO GIVEN

Fig. 2. RF field profilesV � f̂ for theTE � mode for: matched load
(solid curve), 6% power reflection and� = 0 (long dashes), 6% power
reflection and� = 180 (short dashes), 6% power reflection and� = 90

(dots), and 6% power reflection and� = 270 (dashed–dotted).

Fig. 3 shows a Rieke diagram for theTE25; 6� mode corresponding
to the parameters used in Table IV and Fig. 2. As also observed by
other authors [6], there is a region where equifrequency lines converge
and where two or more frequencies can be present simultaneously, for
the same load characteristics. This “unstable region” occurs forjRj
slightly less than 0.4 and phase� � 240

�. In most cases investigated
numerically, this occurred for a phase of the reflection coefficient�

slightly less than 270�. This may explain why the field profile is so
strongly distorted in this region. For other cases, the Rieke diagram
provides other information [1].

Fig. 3. Rieke diagram for theTE � mode with beam energy of
78.9 keV,I = 46:6 A, B = 6:03 T, beam radius of 8.1 mm, and average
velocity ratio� = 1:11. The equifrequency lines cover the frequency range
151.10–151.20 GHz in steps of 10 MHz.

IV. CONCLUSIONS

The effect of reflection on the behavior of a 1-MW 140-GHz gy-
rotron has been investigated for some experimentally relevant param-
eters. The effect of the electron beam and reflection coefficient on the
frequency and RF field profile has been taken into account. The use of
Rieke diagrams has been useful for this purpose. A quantitative fit to
the data has not been performed. One may make the following qualita-
tive conclusions.

• Power reflection back into the gyrotron cavity frequently has a
significant effect on the RF field profile. Calculations using a
fixed Gaussian field profile may not be as accurate as one might
wish.

• The (poorly known) phase of the reflection coefficient is impor-
tant, even in single-mode approximation. The field profile, output
power, and quality factor depend sensitively on it, even for small
values ofjRj.

• Frequency pulling depends on the magnetic field, beam radius,
velocity ratio, and reflection coefficient. Its magnitude varies
from about 50 to 100 MHz, which is significantly less than the
separation of theTE25; 6 and TE22; 7 modes in cold-cavity
approximation (260 MHz).

• Long line effects basically change the phase and spread out the
Rieke diagram.

• Mode competition calculations including the dependence on the
phase of the reflection coefficient (which will be different for
each mode), will be computationally very expensive; however,
by not including it, it is unlikely to be sufficiently accurate.
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An Efficient Krylov-Subspace-Based Algorithm to Solve
the Dielectric-Waveguide Problem

Kaladhar Radhakrishnan and Weng Cho Chew

Abstract—An efficient scheme based on the bi-Lanczos algorithm
has been developed for analysis of the dielectric-waveguide problem. A
two-dimensional finite-difference scheme in the frequency domain is used
to discretize the waveguide cross section. The resulting sparse eigenvalue
problem is solved efficiently using the bi-Lanczos algorithm. Apart from
solving the modes of the dielectric waveguide, a scheme to solve for the
fields in the presence of a localized source is also described. Numerical
results are also included to confirm the validity of the method.

Index Terms—Bi-Lanczos algorithm, finite difference, optical wave-
guides.

I. INTRODUCTION

In recent years, advances in optical waveguide technology have es-
tablished the need for numerical algorithms to carry out the modal anal-
ysis for dielectric waveguides. Dielectric waveguides used in integrated
optics consist primarily of rectangular dielectric cores. Since waveg-
uides of rectangular cross section have no closed-form solution, the
eigenmodes of the waveguide have to be found numerically. Several
numerical methods are available to solve for the modes of dielectric
waveguides. The dielectric waveguides were first analyzed using the
mode-matching technique [1]. Goell [2] analyzed the same problem by
expanding the field using circular harmonics. More recently, with the
increase in the computational power of the computers, finite-element
[3], [4] and finite-difference [5]–[8] techniques were used to solve the
dielectric-waveguide problem. Schweiget al. [5] used theEz � Hz

formulation to solve the problem. However, this formulation suffered
from the occurrence of spurious modes. To avoid the spurious modes,
Bierwirth et al. [6] used the transverse-field components to formulate
the problem. This results in a sparse asymmetric matrix that is free of
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